Gram-Scale Synthesis of (+**)-Discodermolide**

Amos B. Smith, III,* Michael D. Kaufman, Thomas J. Beauchamp, Matthew J. LaMarche, and Hirokazu Arimoto

Department of Chemistry, Monell Chemical Senses Center, and Laboratory for Research on the Structure of Matter, University of Pennsylvania, Pennsylvania 19104

smithab@sas.upenn.edu

Received September 24, 1999

ABSTRACT

In 1990, Gunasekera and co-workers at the Harbor Branch Oceanographic Institute reported the isolation of $(+)$ discodermolide (**1**) from the deep-water Caribbean sponge *Discodermia dissoluta*. ¹ Early studies indicated that **1** possesses substantial immunosuppressive activity. More recent investigations have revealed **1** to be a potent antimitotic agent, $²$ possessing a mode of action similar to that of the</sup> clinically proven anticancer agent paclitaxel (Taxol).³ Both natural products arrest the cell cycle at the M phase, promote microtubule formation, and have similar inhibitory effects (IC_{50}) against breast cancer carcinoma [2.4 nM (1) and 2.1

nM (paclitaxel)].2 Importantly, **1** is also potent against multidrug resistant (MDR) carcinoma cell lines.4

The biological data obtained to date indicate that $(+)$ discodermolide holds great promise as a new chemotherapeutic agent for the treatment of cancer. Unfortunately, the supply of **1** is severely limited; the reported isolation yield is only 0.002% (w/w from frozen sponge), resulting in the acquisition of only 7 mg of natural product from 434 g of sponge.¹ Thus, total synthesis is an attractive and, to date, the only economical means of producing the quantities of **1** required for further biological evaluation.5 To satisfy this need, we set out to improve our first generation synthesis^{5b} of *ent*-**1**. Herein we report a second-generation synthesis which has been utilized to produce 1.043 g of totally synthetic, crystalline (+)-discodermolide (**1**).

⁽¹⁾ Gunasekera, S. P.; Gunasekera, M.; Longley, R. E.; Schulte, G. K. *J. Org. Chem.* **1990**, *55*, 4912; (correction) **1991**, *56*, 1346.

^{(2) (}a) Hung, D. T.; Chen, J.; Schreiber, S. L. *Chem. Biol.* **1996**, *3*, 287. (b) ter Haar, E.; Kowalski, R. J.; Hamel, E.; Lin, C. M.; Longley, R. E.; Gunasekera, S. P.; Rosenkranz, H. S.; Day, B. W. *Biochemistry* **1996**, *35*, 243.

⁽³⁾ Schiff, P. B.; Frant, J.; Horwitz, S. B. *Nature* **1979**, *277*, 665.

⁽⁴⁾ Kowalski, R. J.; Giannakakou, P.; Gunasekera, S. P.; Longley, R. E.; Day, B. W.; Hamel, E. *Mol. Pharmacol.* **1997**, *52*, 613.

From the synthetic perspective (Scheme 1), we maintained the triply convergent approach utilized in our first-generation

synthesis, dissecting the natural product at the $C(8-9)$ and $C(13-14)$ alkenes to generate subunits $A-C$, each to be prepared from a common precursor (**CP**). In contrast to our first-generation approach, we chose to maintain the lactone oxidation state in fragment **C**, in anticipation of a chemoselective Wittig olefination with phosphonium salt **AB**, the latter comprising the $C(9-24)$ carbons of the natural product. Such a second-generation approach would greatly simplify the end-game of the synthesis and thus facilitate material throughput for large-scale synthesis.

Our point of departure entailed protection of $(+)$ -2 as the PMB ether, followed by reduction (LAH), oxidation (Swern),⁶ and reaction with oxazolidinone $(+)$ -4⁷ to furnish the highly crystalline aldol $(+)$ - 5^8 in $52-55\%$ yield from $(+)$ - 2 (Scheme 2). In practice, the first three intermediates of this

sequence can be carried forward without purification and the aldol product $(+)$ -**5** crystallized from the crude reaction mixture. Transamidation of $(+)$ -5 then gave $(-)$ -CP⁹ in excellent yield. Purification of $(-)$ -CP was facilitated by isolation of the recyclable oxazolidinone auxiliary (80-90%) by efficient crystallization from the reaction mixture. Importantly, this concise, five-step sequence required only one chromatographic purification and could be performed routinely on a 60-g scale.

Fragments $(+)$ -**A** and $(+)$ -**B** were next prepared in large scale, upon optimization of the chemistry developed in our first-generation synthesis (Scheme 3).^{5b} The synthesis of (+)-**^A** (20-g scale) proceeded in six steps (55% overall), and all intermediates en route proved crystalline. The (*Z*)-vinyl iodide $(+)$ -**B** (30-g scale) was prepared in 40 -46% from $(-)$ -**CP** and required only a single chromatographic purification.

Preparation of the $C(1-8)$ fragment $(-)$ -C began with silylation (TBSOTf) of $(-)$ -CP, removal of the PMB group $[H_2, Pd(OH)_2]$, and oxidation $(SO_3 \cdot Pyr)^{10}$ to furnish crystalline aldehyde $(-)$ - 8^9 (Scheme 3). Addition of silyl enol ether **9**¹¹ to a premixed solution of (-)-8 and TiCl₄ at -78 °C then afforded, after acid-catalyzed lactonization of the corresponding hydroxy amide, lactone $(-)$ -10.⁹ Importantly,
this Mukaiyama aldol proceeded with 20:1 selectivity this Mukaiyama aldol proceeded with 20:1 selectivity, favoring the desired anti-Felkin product. Reduction of enone $(-)$ -10 with K-Selectride then furnished the corresponding allylic alcohol with 9:1 selectivity, favoring the desired α -isomer (not shown). The structure of this alcohol was secured by single-crystal X-ray analysis. Silylation of the hydroxyl (TBSCl) and oxidative cleavage of the trisubstituted alkene $(O_3; PPh_3)$ completed the synthesis of crystalline aldehyde $(-)$ -C. ⁹

We are pleased to note that this second-generation route to $(-)$ -C eliminated seven steps from our original fragment

⁽⁵⁾ Total syntheses of **1** and *ent*-**1** to date: (a) Nerenberg, J. B.; Hung, D. T.; Somers, P. K.; Schreiber, S. L. *J. Am. Chem. Soc.* **1993**, *115*, 12621. (b) Smith, A. B., III.; Qiu, Y.; Jones, D. R.; Kobayashi, K. *J. Am. Chem. Soc.* **1995**, *117*, 12011. (c) Harried, S. S.; Yang, G.; Strawn, M. A.; Myles, D. C. *J. Org. Chem.* **1997**, *62*, 6098. (d) Marshall, J. A.; Johns, B. A. *J. Org. Chem.* **1998**, *63*, 7885.

⁽⁶⁾ Mancuso, A. J.; Swern, D. *Synthesis* **1981**, 165.

⁽⁷⁾ Gage, J. R.; Evans, D. A. *Org. Synth.* **1990**, *68*, 77.

⁽⁸⁾ Walkup, R. D.; Kahl, J. D.; Kane, R. R. *J. Org. Chem.* **1998**, *63*, 9113.

⁽⁹⁾ The structure assigned to each new compound is in accord with its infrared, 500-MHz 1 H NMR, and 125-MHz 13 C NMR spectra, as well as appropriate ion identification by HRMS.

⁽¹⁰⁾ Parikh, J. R.; Doering, W. von E. *J. Am. Chem. Soc.* **1967**, *89*, 5505. (11) Paterson, I. *Tetrahedron Lett.* **1979**, 1519.

"**C**" synthesis and that five of the seven intermediates were crystalline, again facilitating large-scale synthesis.

With fragments $A - C$ in hand, attention turned to the palladium-catalyzed cross-coupling of fragments (+)-**^A** and (+)-**^B** (Scheme 4). Optimal results were obtained by addition

of *t*-BuLi to a solution of $(+)$ -A and ZnCl₂ in Et₂O at -78 °C, followed by warming the reaction mixture to room temperature. Addition of this solution via cannula to an intimate mixture of $(+)$ -**B** and Pd(PPh₃)₄ (5 mol %) furnished (+)-**¹²** in 66% yield. The use of 3 equiv of *^t*-BuLi for each equivalent of $(+)$ -**A** was imperative; use of lesser amounts resulted in greatly diminished yields and partial recovery of (+)-**A**. We speculate that the mixed alkyl zinc species **¹¹** is the reactive alkyl donor in this coupling reaction. It is noteworthy that this cross-coupling reaction is highly efficient, requiring only 1.15 equiv of (+)-**^A** to obtain synthetically useful yields, whereas most cross-couplings require at least 1.5 equiv of alkyl iodide for comparable efficiency.5d Currently we are investigating the scope of this modification of the Negishi coupling.¹² Crystallization of $(+)$ -**12** furnished diastereomerically homogeneous material.

Introduction of the diene moiety at this stage required a protecting group exchange to facilitate eventual discrimination of the C(19)-PMB ether. Accordingly, the PMB ether $(+)$ -12 was removed chemoselectively $(DDQ)^{5b}$ and replaced with a trityl ether (Scheme 5). Reductive opening of the

acetal $(DIBAI-H)^{13}$ liberated a primary alcohol, which in turn was oxidized (DMP)¹⁴ and subjected to the Yamamoto

⁽¹²⁾ Negishi, E.; Valente, L. F.; Kobayashi, M. *J. Am. Chem. Soc.* **1980**, *102*, 3298.

⁽¹³⁾ Takano, S.; Akiyama, M.; Sato, S.; Ogasawara, K. *Chem. Lett.* **1983**, 1593. (14) Dess, D. B.; Martin, J. C. *J. Am. Chem. Soc.* **1991**, *113*, 7277.

protocol.¹⁵ While the diene E/Z ratio was only 8-12:1, we were able to remove easily the unwanted *E* isomer at a later stage of the synthesis by taking advantage of the differing reactivity of the *E* and *Z* dienes (vide infra).¹⁶ Removal of the trityl group¹⁷ then furnished 14 in excellent overall yield.

Construction of Wittig salt **AB** (Scheme 6) began with conversion of alcohol **14** to the corresponding iodide by employing our modification of the Corey protocol (PPh₃, I_2 , $PhH/Et₂O$;^{5b} subjection of the resultant unstable iodide to excess PPh₃ at ultrahigh pressure $(12.8 \text{ Kbar})^{18}$ in a buffered, nonpolar medium (Hünig's base, toluene/benzene) reliably delivered **AB** on a multigram scale. In our first-generation synthesis, formation of a similar phosphonium salt was plagued by competitive cyclization of the trisubstituted olefin with the primary iodide to yield a cyclopentene byproduct.¹⁹

Chemoselective addition of the ylide derived from **AB** to aldehyde (-)-**^C** afforded **¹⁵** in good yield with excellent *Z/E* selectivity $(15-24:1)$. Having completed the assembly of the discodermolide carbon skeleton, treatment of **15** with DDQ provided (+)-**¹⁶** as a single diastereomer along with an easily separable byproduct (not shown) resulting from a fortuitous Diels-Alder reaction between the *^E* diene impurity and DDQ.20 Completion of the discodermolide synthesis then entailed installation of the carbamate via the Kocovsky protocol (Cl₃CCONCO; Al_2O_3 ²¹ and final deprotection (3) N HCl, MeOH). The bulk of the (+)-discodermolide prepared (1.06 g) was crystallized from acetonitrile to afford 1.043 g of totally synthetic, crystalline (+)-discodermolide, identical in all respects with the natural material (singlecrystal X-ray analysis, 500-MHz ¹ H and 125-MHz 13C NMR in both $CDCl₃$ and $CD₃CN$, IR, HRMS, optical rotation).

In conclusion, we have developed a second-generation synthesis of $(+)$ -discodermolide that is both highly efficient, proceeding in 6% overall yield, and amenable to gram-scale production of this potentially important natural product. Notable features of the synthesis include triple convergency, with each of the three advanced subtargets derived from a common precursor (**CP**), a modified Negishi coupling, efficient synthesis of phosphonium salt **AB** via ultrahigh pressure, and a chemoselective Wittig coupling reaction.

Acknowledgment. M.D.K. and T.J.B. thank the NIH for postdoctoral fellowships. We also thank Novartis for financial support and for supplying spectral data for $(+)$ discodermolide in CD3CN and Dr. Patrick Carroll for the X-ray crystallographic analysis of synthetic (+)-discodermolide and other intermediates.

Supporting Information Available: Spectroscopic and analytical data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL9910870

^{(15) (}a) Ikeda, Y.; Ukai, J.; Ikeda, N.; Yamamoto, H. *Tetrahedron* **1987**, *43*, 723. (b) This protocol was first used in synthetic studies toward **1** by Heathcock and co-workers. See: Clark, D. L.; Heathcock, C. H. *J. Org. Chem.* **1993**, *58*, 5878.

⁽¹⁶⁾ Compounds listed without an optical rotation sign are a mixture of *E/Z* diene isomers; the major isomer is that depicted.

⁽¹⁷⁾ Boeckman, R. K., Jr.; Potenza, J. C. *Tetrahedron Lett.* **1985**, *26*, 1411.

⁽¹⁸⁾ Dauben, W. G.; Gerdes, J. M.; Bunce, R. A. *J. Org. Chem.* **1984**, *49*, 4293.

⁽¹⁹⁾ Qiu, Y. Ph.D. Dissertation, University of Pennsylvania, Philadelphia, PA, 1997.

⁽²⁰⁾ The *E* isomer can adopt the *S*-*cis* conformation needed to undergo cycloaddition with DDQ, whereas the *Z* isomer is prohibited from adopting the requisite *S*-*cis* conformation due to significant steric interaction between the $C(24)$ vinyl and $C(20)$ methine protons.

⁽²¹⁾ Kocovsky, P. *Tetrahedron Lett.* **1986**, *27*, 5521.